Refining Search Queries from Examples Using Boolean Expressions and Latent Semantic Analysis
نویسندگان
چکیده
This paper describes an algorithm whereby an initial, naïve user query to a search engine can be subsequently refined to improve both its recall and precision. This is achieved by manually classifying the documents retrieved by the original query into relevant and irrelevant categories, and then finding additional Boolean terms which successfully discriminate between these categories. Latent semantic analysis is used to weight the choice of these extra search terms to make the resulting queries more intuitive to users.
منابع مشابه
Query expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملQuerying Ontologies: A Controlled English Interface for End-Users
The semantic web presents the vision of a distributed, dynamically growing knowledge base founded on formal logic. Common users, however, seem to have problems even with the simplest Boolean expressions. As queries from web search engines show, the great majority of users simply do not use Boolean expressions. So how can we help users to query a web of logic that they do not seem to understand?...
متن کاملQuerying the Semantic Web with Ginseng: A Guided Input Natural Language Search Engine
The Semantic Web presents the vision of a distributed, dynamically growing knowledge base founded on formal logic. Common users, however, seem to have problems even with the simplest Boolean expression. As queries from web search engines show, the great majority of users simply do not use Boolean expressions. So how can we help users to query a web of logic that they do not seem to understand? ...
متن کامل'surfing for knowledge' finding semantically similar Web clusters
In this paper we present our technique for finding semantically similar clusters within web documents obtained from a set of queries retrieved from the Google search engine. This technique utilizes a clustering algorithm based on previous Latent Semantic Analysis (LSA) work pioneered by Deerwester. In this paper we demonstrate how by using our clustering algorithm we can resolve ambiguities pre...
متن کاملRanking of Document Recommendations from Conversations using Probabilistic Latent Semantic Analysis
Any Information retrieval from documents is done through text search. Now a day, efficient search is done through Mining techniques. Speech is recognized for searching a document. A group of Conversations are recorded using Automatic Speech Recognition (ASR) technique. The system changes speech to text using FISHER tool. Those conversations are stored in a database. Formulation of Implicit Quer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004